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Exception-Tolerant Hierarchical Knowledge
Bases for Forward Model Learning

Daan Apeldoorn and Alexander Dockhorn

Abstract—This paper provides an overview of the recently proposed forward model approximation framework for learning games of the
general video game artificial intelligence (GVGAI) framework. In contrast to other general game-playing algorithms, the proposed agent
model does not need a full description of the game but can learn the game’s rules by observing game state transitions. Based on
hierarchical knowledge bases, the forward model can be learned and revised during game-play, improving the accuracy of the agent’s
state predictions over time. This allows the application of simulation-based search algorithms and belief revision techniques to previously
unknown settings. We show that the proposed framework is able to quickly learn a model for dynamic environments in the context of the
GVGAI framework.

Index Terms—Hierarchical Knowledge Bases, Forward Model Approximation, General Video Games, Belief Revision, Monte Carlo
Tree Search
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1 INTRODUCTION

R ESEARCH on the topic of artificial intelligence in games
aims to study how agents can be enabled to au-

tonomously play games. While many developed agents focus
on a single game to play, general game playing agents try to
compete in multiple games. To evaluate such agents multiple
general game playing frameworks were developed in which
said agents can be tested without the need of adjusting an
agent to a specific representation of a game’s states or actions.

The General Video Game Playing Artificial Intelligence
(GVGAI) framework [1] can be used to test agents in their
capability of playing multiple arcade like video games using
a unified description of the game’s states and its rules. The
associated GVGAI-competition agents offers multiple tracks
each posing a unique challenge for competing agents. Both,
the Single-Player Planning-track and the Single-Player Learning-
track focus on the agents’ game-playing capabilities. While
in the Planning-track an agent needs to play the game
based on the information on the current game state and
the forward model, the learning-track does not provide the
forward model. In contrast, in the original setting of the
learning-track, agents were allowed to play three levels of
a game for five minutes of training time, after which they
are evaluated on two previously unseen levels. While the
rules were changed and now allow submitted agents to be
pre-trained, in this paper, we focus on the challenges implied
by the extremely limited training time of the original rules.

Due to the restriction of not knowing the game’s for-
ward model, agents in the learning-track either relied on
reinforcement learning techniques or made use of greedy
heuristics for action-selection. Submitted solutions of the
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years 2017 and 2018 lacked competitiveness with submitted
agents of the Planning-track, which, in comparison, often rely
on simulation-based search methods, such as Monte Carlo
Tree Search [2], Open Loop Search [3] and Rolling Horizon
Evolutionary Algorithm [4], [5].

To overcome the huge performance gap between the
solutions of the two tracks we proposed a novel general game
learning algorithm called forward model approximation [6]. In
contrast to reinforcement learning we do not try to learn the
inherent value of an action or state-action pair, but model
potential game state transitions after a chosen action was
applied. By learning the model for mapping the current state
and an action to a state transition the agent can predict the
outcome of available actions and act accordingly, enabling it
to apply search algorithms using the learned model.

In our underlying conference paper [6] we introduced
the forward model approximation framework which uses
Hierarchical Knowledge Bases to learn and refine a forward
model. In this extended version, we validate the belief
revision approach and provide extensive details on the
model’s learning and the agent’s reasoning process as well
as a more sophisticated analysis of the model parameters.
The main contributions of this paper are:
• an introduction to forward model learning and the

forward model approximation framework (Section 3)
• an analysis of forward model characteristics and how

these can be exploited to improve forward model
learning (Section 3.1)

• a validation of the used belief revision approach for Hier-
archical Knowledge Bases representing learned forward
models to underpin the applicability of Hierarchical
Knowledge Bases in the context of forward model
approximation (Section 4)

• a case study on the application of forward model
learning, based on hierarchical knowledge bases in the
context of the GVGAI framework (Sections 5 and 6)

• a parameter analysis to better explain the optimization
and agent selection process (Section 5.2 and Section 6.2)
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2 GENERAL GAME PLAYING/LEARNING

Next to the many efforts put into artificial intelligence
methods for various board games such as Chess, Morris,
and Go, the Stanford General Game Playing competition
[7] asked its participants to implement agents, which can
compete in a set of previously unknown games. Developed
agents needed to act based on the current state of the board
and a set of simple rules. Many attempts have been made
to create similar description languages for the definition of
video games.

Thanks to the efforts of Tom Schaul, the Video Game
Definition Language (VGDL) [8] was created on which the
General Video Game AI (GVGAI) framework and its accom-
panying competition is based on. The GVGAI framework
replicates many arcade like video games by describing the
game’s components, its forward model, and its visualization.
Here, an agent receives a state description and a set of up to
five possible actions. Those actions are named after buttons of
a typical game controller and map the inputs “Up”, “Down”,
“Left”, “Right”, and “Use”. However, the outcome of each of
the agent’s actions is completely dependent on the rules of
the game, such that a suitable policy needs to be learned for
each problem individually.

In recent years the competition offered multiple tracks,
which focus on different aspects of general video game
playing. The next sections quickly summarize the single
player game playing and the learning track as well as
submissions therein. In the remainder of this paper we will
focus on recent developments in context of the learning track.

2.1 GVGAI - Single Player Game Playing Track
The currently most popular track is the single player game
playing track. Here, a forward model is provided to the
agents, which can be used to simulate the outcome of an
action and returns the resulting state and reward.

In 2018 a total of 14 submissions entered the competition
(including 4 sample submissions provided by the competition
hosts). The currently best performing agent, Yolobot [9], uses
a mix of BFS and MCTS. While the former is used in games,
which include deterministic state transitions, the latter is
applied to all non-deterministic games. Additionally, the
algorithm identifies reachable objects and rates its interest
on them. Either BFS or MCTS is used to find a suitable path
to potential targets, while avoiding any dangers.

Due to the inclusion of non-deterministic games, the
application of MCTS variants such as Open Loop MCTS
(OLMCTS) were studied in multiple works (see a summary
of agents in [3]). OLMCTS and other tree searching algo-
rithms such as Open Loop Expectimax Tree Search are able
to quickly sample possible action sequences and evaluate
their outcome [9].

Next to tree search algorithms, the search of action se-
quences based on genetic algorithms showed to be a popular
choice. Methods such as the Rolling Horizon Algorithm [10]
evolve short action sequences and evaluate their outcome
based on a scoring function similar to OLMCTS.

The overall performance of agents in the game playing
track is already very good. Despite being confronted with
a previously unknown game, the agents are often able to
win a game or at least find action sequences, which yield

a high score. Due to the tracks rules not much work has
been done on the analysis of reinforcement learning agents.
While these may be able to choose actions much quicker than
search-based agents, they also need to be extensively pre-
trained. Nevertheless, experiments on Atari 2600 games have
shown that deep reinforcement learning-based agents are
able to play a wide range of arcade games with impressive
performance [11].

2.2 GVGAI - Single Player Game Learning Track
In contrast to the game playing track, the difficulty of the
game learning track is much higher due to the absence of
a forward model. All previously discussed methods of the
game-playing track heavily rely on such a forward model,
which enables the agent to run simulations for hypothetical
action sequences. Since the training time is also limited to
5 minutes of playtime, reinforcement learning algorithms
cannot yet effectively be applied. Therefore, new algorithms
need to be found for solving problems of this domain.

In the previous years multiple agents have been submit-
ted with varying success, however, not much information is
available on them. The submission by Ercüment İlhan [12]
uses an MCTS agent, which was enhanced with an online on-
policy temporal-difference learning method, called true online
Sarsa(λ) [13]. Here, the agent optimizes its estimation of the
state-action value function by continuously revising it based
on the repeated interactions with the game environment.
This agent performed best in the training set, but placed
5th out of 6 in the test game set (slightly ahead of an
adaptation of the Yolobot from the game playing track).
While in theory this learning approach should be able to
detect useful action sequences, the available learning time
is too short to effectively do so. Nevertheless, this approach
can become in handy, in case enough training samples can
be gathered during the training time or observations can be
generalized across different game-states.

Surprisingly the random controller provided by the com-
petition organizers performed second best in the evaluation
set of 2018 and became first place in 2019. This shows
that well-known methods for value estimation or policy
improvement do not work at their full potential using the
limited information in this track. Short time frames for
learning the game’s rules (≤ 5 minutes of playing time in
the former original competition specification) and decision-
making (40ms per time step) drastically limit the applicability
of iterative methods or long search procedures. Hence, there
is still more room for improvement.

Our work contributes to overcome the huge performance
gap between agents of the game playing and game learning
track and to the idea that machine learning combined with
methods from symbolic knowledge representation can be
combined to create an appropriate agent model. This work
will show how the introduction of approximated forward models
and efficient learning and operation schemes can help us
in developing new kinds of agents. Learning these forward
models cannot just be of value for simulation-based search
approaches, but also benefit reinforcement learning agents by
enabling model-based reinforcement learning. These would
be able to refine their policy based on simulated interactions
with the approximated forward model after the training time
on the real environment is over.
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3 FORWARD MODEL LEARNING

Agents for general game-playing often rely on the availability
of a forward model. Since played games are unknown at the
time of developing the agent, no specialized rules can be
implemented. As a result, agents are required to learn how
to play a given game by observation.

Reinforcement learning agents tackle this challenge by
trying to estimate the value of available actions. While this
approach has been successfully applied to games of the Atari
Learning Environment [14], [15], the experiments have also
shown that the agent requires many trials until reasonable
game-playing performance can be achieved. The trial-and-
error behavior can be avoided when providing the agent with
an internal model of the world. Reasoning about future game-
states, a process which is also referred to as ”imagining”,
allows the agent to spot and avoid adverse consequences
by predicting the game-state several steps ahead [16]. In an
analogous manner, an internal model of the world enables
agents to apply search algorithms and evaluate the value of
its actions using simulations of its environment.

As the term suggests, forward model learning focuses
on learning a reliable model of the agent’s environment by
interacting with it and observing the consequences. Using
a data set of these observations the learning task can be
represented as a classification or regression problem in which
the current state and action are mapped to the next state.

Proposed approaches generally differ in the way they
observe and process the environment’s state as well as
how they represent the learned forward model. Pixel-based
state observations have been used in conjunction with
latent imagination to learn complex motion behaviors [17]
as well as controllers for a top-down racing game and
Doom [18]. Using an object-based representation, several
works have presented forward models for games of the
GVGAI framework [6], [19] and Mario [20]. In such an object-
based observation the entirety of observable sensor values is
grouped into one vector per object in the scene. In case such
a grouping is missing, a study by Dockhorn and Kruse [21]
suggests that it can be inferred through dependency analysis.
Recent studies on spatially structured representations (such
as a tile-map) include the games Sokoban [22] and the Game
of Life [23]. These approaches achieve a higher sampling
efficiency by applying a convolutional approach in which
each tile is predicted given its local neighborhood. Even
without such a structured representation, forward models
have been learned for several motion control tasks [24], [25]
and specifically robot control [26].

Interesting characteristic of forward model-based meth-
ods include but are not limited to:

• generalizeablity: models can be applied across states
and may even apply to previously unobserved states.

• transfer learning: the model can be independent of
the underlying task enabling transfer learning across
multiple games, e.g. general models for jump-and-run
games or top-down view grid-based games.

• active search: after wrong predictions the agent may
be able to spot its own weaknesses in the prediction of
future events. This may enable self-motivated or active
learning methods in which the agent actively seeks new
experiences in the environment to refine its model.

• risk avoidance: Due to the forward model the agent
is able to search for possible positive outcomes, while
avoiding adverse consequence of trial-and-error.

3.1 Fundamentals of Forward Model Learning

In general the response of the environment can be modelled
as a probability distribution over all previous interactions
with the agent [27].

P (rt+1, st+1|s0, a0, . . . , st, at)

Learning or storing such a specific probability distribution is
often infeasible due to the exponential growth over time and
the large number of possible states, actions, and rewards.

Therefore, reinforcement learning often focuses on
Markov Decision Processes, in which we assume that the
successor state and reward are only dependent on the latest
interaction between the agent and the environment [28]. In
other words the probability distribution for the successor
state reduces to:

P (st+1|s0, a0, . . . , st, at) = P (st+1|st, at)

and the reward function maps the last state action pair to a
provided reward:

R(st, at) = rt+1

3.2 Basic Model

In the context of exception-tolerant Hierarchical Knowledge Bases
(HKBs), an agent is usually considered to be equipped with n
sensors through which it can perceive its current state in the
environment (e. g., a game). Furthermore, the agent is able
to perform actions from a predefined action space (e. g., the
keys to be pressed on the controller). The agent is also able
to perceive how good the performed actions were, in form of
(numeric) rewards. The perceived rewards can then be used
to learn a weighted state-action pair representation where the
highest weight determines which action has to be performed,
given a perceived state.

More formally, as described in [29], in such a representa-
tion, a state s is an element of a multi-dimensional state
space S = S1 × ... × Sn where n is the number of the
agent’s sensors and every Si is a set of possible values of the
corresponding sensor. Furthermore, the agent selects actions
from a predefined action set A and the learned weights are
stored in a multi-dimensional matrix Q̂ = (qs1,...,sn,a) with
si ∈ Si and a ∈ A. The weights can be learned by different
machine learning approaches, provided that the learning
approach results in a representation such that, given a state,
the highest weight determines the best action to be selected
(i. e., amax

s1,...,sn = argmax
a′∈A

qs1,...,sn,a′ ).

After selecting an action the environment responds with
a reward and a successor state st+1. Our target will be
to construct a classifier, hereinafter referred to as approxi-
mated forward model, which approximates the distribution
P (st+1, rt+1|st, at) based on a history of previous interac-
tions with the environment.

Such an approximated forward model can be split into
multiple sub-components in case the multi-dimensional
representation S consists of independent components. If this
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Fig. 1. Comparison of forward model architectures: (left) single end-to-end model for the whole environment; (middle) forward model-ensemble
consisting of a sub-model for each sensor of the environment; (right) forward model-ensemble consisting of a sub-model for each type of entities [21]

is the case, a complete reconstruction of the state space S
can be achieved by modelling each independent component
separately. See Figure 1 for a comparison of popular forward
model types.

The following subsections introduce HKBs, which will
be used for learning and later also for revising such clas-
sifiers (using belief revision techniques) during continuous
interactions with the games environment.

4 HIERARCHICAL KNOWLEDGE BASES

This section briefly outlines the preliminaries and compo-
nents needed for the agent model learning an approximated
forward model based on exception-tolerant Hierarchical Knowl-
edge Bases (HKBs), which will be introduced in Section 5. At
first, the basics needed for this approach will be explained,
for which it is useful to define HKBs and how they can be
learned (Subsections 4.1 and 4.2). These sections will closely
follow several preliminary works, especially [6], [29], [30] and
[31]. After that, the reasoning algorithm defined on HKBs
will be briefly summarized, following [31] (Subsection 4.3).
Subsequently, some modifications on HKBs and the learning
process (Subsection 4.4) to fit the needs of our agent model
will be explained. Finally, a belief revision approach for HKBs
will be described and validated (Section 4.5).1

4.1 Foundations of HKBs
This section provides an overview and the main definitions
needed to understand the basic idea of HKBs as well as
the basic algorithm how they can be learned from weighted
state-action pairs by closely following [29], [30], [31] and [6].
For more details on HKBs, the reader should refer to the
original literature mentioned here.

4.1.1 Overview
An HKB is a knowledge representation approach which
allows for efficient rule-based knowledge representation in a
human readable and generalizing way. It can be used, e. g.,
for describing agent behavior.

1. Implementations of relevant algorithms for integrating learning,
reasoning and belief revision based on HKBs can be found in the open-
source toolbox InteKRator [32].

The main idea is to model knowledge with as few
as possible rules, by making use of rough general rules
(involving only a few sensory information) with exceptions.
Exceptions are represented by more specific rules (involving
more sensory information) and by this, also exceptions from
exceptions (i. e., 2nd and higher order exceptions) are possible.
This allows for representing knowledge very compactly by
only relying on exception rules where needed.

4.1.2 Technical Details
An HKB consists of rules which are organized on different
levels of abstraction. An HKB can handle multiple rules per
level and the rules also comprise weights. According to [31],
two different kinds of states and two different kinds of rules
need to be distinguished:

Definition 1 (Complete States/Partial States) A complete
state is a conjunction s := s1 ∧ ... ∧ sn of all values si ∈ Si
currently perceived by the agent’s sensors, where n is the number
of sensors and every perceived sensor value si ∈ Si of the corre-
sponding sensor value set Si is assumed to be a fact in the agent’s
current state. A partial state is a conjunction s :=

∧
s′∈S s

′ of a
subset S ⊂ {s1, ..., sn} of the sensor values of a complete state.

Definition 2 (Complete Rules/Generalized Rules) Complete
rules and generalized rules are of the form pρ ⇒ aρ [wρ], where
pρ is either a complete state (in case of a complete rule) or a partial
state (in case of a generalized rule). The conclusion aρ ∈ A is
an action of the agent’s action space A and wρ ∈ [0, 1] is the
rule’s weight.

Thus, according to these two definitions, complete rules
map complete states to actions and generalized rules map partial
states to actions.

An HKB can now be defined as follows:

Definition 3 (Exception-Tolerant Hierarchical Knowledge
Base) An exception-tolerant Hierarchical Knowledge Base (HKB)
is an ordered set KB := {R1, ..., Rn+1} of n + 1 rule sets,
where n is the number of sensors (i. e., the number of state space
dimensions). Every set Rj<n+1 contains generalized rules and
the set Rn+1 contains complete rules, such that every premise
pρ =

∧
s∈Sρ s of a rule ρ ∈ Rj (with Sρ ⊆ {s1, ..., sn} and

si ∈ Si) is of length |Sρ| = j − 1.
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According to Definition 3, the set R1 contains the most
general rules (with empty premises) and the set Rn+1

contains the most specific (i. e., complete) rules.
For the relations of rules, the term of (needed) exception

will be used, according to the following definition (cf. [29]):

Definition 4 (Needed Exception) A rule ρ ∈ Rj>1 is an
exception to a rule τ ∈ Rj−1 with premise pτ =

∧
s∈Sτ s, action

aτ as conclusion and weight wτ , if Sτ ⊂ Sρ and aρ 6= aτ . The
exception is needed, if no other rule υ ∈ Rj−1 exists with premise
pυ =

∧
s∈Sυ s and action aυ as conclusion where Sυ ⊂ Sρ and

aυ = aρ and wυ > wτ .

4.2 Learning HKBs

An HKB can be extracted from a weighted state-action
pair representation Q̂ (that is learned, e. g., through a
reinforcement learning technique or by simply counting
relative frequencies) using the following approach which
was originally introduced in [30], closely following [31] here.

The input is a weighted state-action pair representation Q̂
and the output is an HKB KBQ̂ which reflects the knowledge
contained in Q̂ by performing the following steps:2

1) Initial creation of rule sets:
In the first step, the multiple abstraction levels
R1, ..., Rn+1 of the knowledge base are initially filled
with rules. The weights of generalized rules are cre-
ated by averaging the weights in Q̂ over the missing
dimensions.

2) Removal of worse rules:
In all sets Rj , a rule ρ ∈ Rj is removed, if there exists
another rule σ ∈ Rj with the same partial state as
premise having a higher weight.

3) Removal of worse more specific rules:
In all sets Rj>1, a rule ρ ∈ Rj with premise pρ =∧
s∈Sρ s, conclusion aρ and weight wρ is removed, if

there exists a more general rule σ ∈ Rj′<j with premise
pσ =

∧
s∈Sσ s where Sσ ⊂ Sρ = {s1, ..., sj−1} and

weight wσ ≥ wρ.
4) Removal of too specific rules:

In all sets Rj , a rule ρ ∈ Rj>1 with premise pρ =
∧
s∈Sρ

and conclusion aρ is removed, if there exists a more
general rule σ ∈ Rj′<j with the same action aσ = aρ as
conclusion and with premise pσ =

∧
s∈Sσ s where Sσ ⊂

Sρ = {s1, ..., sj−1} and if ρ is not a needed exception to
a rule τ ∈ Rj−1.

5) Optional filter step:
Optionally, filters may be applied to filter out further
rules which are, e. g., helpful to explain the knowledge
contained in Q̂ through the optimal found policy so far,
but which are not needed for reasoning later.

After performing these steps on Q̂, the knowledge base
KBQ̂ comprises all sets Rj 6= ∅ with the extracted rules
representing the implicit knowledge contained in the learned
weights of Q̂ in a compact way.

2. For performance reasons, only state-action pairs can be considered
here that contribute to the best policy found by the preceding learning
process; an implementation of a faster algorithm for learning HKBs from
state-action sequences can be found in [32].

4.3 Reasoning with HKBs

This section briefly summarizes the basic idea of the efficient
reasoning algorithm on HKBs which was first introduced in
[30]. The summary closely follows [31]:

Given an HKB KB together with the perceived state
s = s1 ∧ ... ∧ sn (with the perceived sensor values s1, ..., sn),
the reasoning algorithm R(KB, s) searches KB upwards
(starting from the bottom-most level Rn+1 ∈ KB) for the first
rule whose premise is satisfied. This rule is then applied and
the concluding action a ∈ A is returned (see [30] for details).
By this, the algorithm selects the most specific rule that fits to
the perceived sensor values and falls back to the next more
unspecific rule (which can be considered a heuristic), in case
no more specific rule with a fitting premise could be found.

4.4 Modifications for Our Agent Model

In this section, the original HKB approach (as described in
Section 4) will be modified to fit the needs of our agent
model, closely following [6].

A knowledge representation based on exceptions which
are layered on several levels of abstraction is a rather useful
approach to gain a compact representation of the knowledge
about an environment like a game. This knowledge can
also be exploited during a learning process which has been
demonstrated in [30], [31]. Nevertheless, according to the
original GVGAI competition specification, our learning agent
is supposed to work in multiple levels of a game and the agent
furthermore only sees three out of five levels in the training
phase. Thus, the agent should be able to learn the general
mechanics of the game rather than optimizing its behavior for
a single level.

For this purpose, we modify the definitions of HKBs
(especially Definition 2) such that rules no longer represent a
mapping of a state to an action but a mapping of a state and
an action which was performed in that state to a resulting
subsequent state. More formally, rules contained in the HKB
are now defined as follows:

Definition 5 (Modified Complete /Generalized Rules)
The modified complete rules and generalized rules are of the form
pρ ∧ a⇒ p′ρ [wρ], where pρ is either a complete state (in case of
a complete rule) or a partial state (in case of a generalized rule),
aρ ∈ A is an action of the agent’s action space A, p′ρ represents (a
part of) the changes in the subsequent state (resulting from action
a performed in state pρ) and wρ ∈ [0, 1] is the rule’s weight.
The values used for any state change representation p′ρ can be
considered disjoint from the values used for any rule’s premise.

Note that since the creation of HKBs from data is
computationally rather expensive (cf. footnote 2), in case
of our agent model, we will only consider small subsets
S′ ⊂ {S1, ..., Sn} of the agent’s state space dimensions for pρ
and p′ρ in Definition 5. This results in several smaller HKBs
where every HKB represents a certain aspect of the agent’s
collected knowledge about the environment. Furthermore, a
merging technique will be used to gain an HKB for higher
dimensional state spaces by merging multiple smaller HKBs.
(For details see Section 5.)

In addition, the extraction algorithm described in
Section 4.2 will be extended by the following filter at the
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end of Step 5: All rules ρ ∈ Rj>1 whose premises do not
contain an action will be removed.

In the following example (extended from [6]), the idea of
such modified HKBs will be explained in the context of the
game Butterflies from the GVGAI competition framework [1].

Example 1 (Butterflies) We consider the game Butterflies
from the GVGAI competition framework [1], where an agent
has to collect butterflies by touching them (see upper left part
of Figure 2): If a butterfly is collected, the agent’s current score
is increased by 2. To learn knowledge about scoring, movement
and winning in the context of the game, the agent’s surrounding
objects, the game’s end state (win/lose), etc. are considered as
subsets of the state space dimensions. The agent’s action space
is defined as A := {Up,Down,Left,Right,Use (,None)}. The
HKBs, which were learned after a short training phase and which
comprise the knowledge about scoring, movement and winning
(i. e., in which states which actions lead to which changes regarding
the respective aspect of the game), are also shown in Figure 2.

2

Fig. 2. Excerpt from the First Level of the GVGAI Game Butterflies
with Corresponding HKBs of the Agent’s Knowledge About the Different
Aspects Scoring, Movement and Winning After a Short Training Phase
(extended from [6])

The HKBs resulting from Example 1 (see Figure 2) can be
read as follows: In case of KBscore, according to the single
rule score±0 on the most general level R1 (which has an
empty premise), the agent learned that in general (when no
action is performed), no score changes are expected. This
covers most of the cases as indicated by the high weight.
According to the four rules on level R3 of KBscore, the
agent learned that if an object with id 5 (i. e., a butterfly)
is perceived above, below, to the left or to the right of the
agent and the agent performs an action in the corresponding
direction of the object, then the score is increased by 2.
The weights of 1.0 indicate that this should happen in all
cases when perceiving these objects and performing these
actions. Level R2 does not contain any rules, thus there are
no relevant exceptions from the most general rule on level
R1 in this game that are only based on actions (without
considering any surrounding objects). Furthermore, level R4

is also empty, since there are no relevant exceptions from the
rules on level R3 that additionally involve the orientation
of the agent. The other two HKBs KBmove and KBwin can
be read in the same way. KBwin only contains one single
rule stating that the game ends always in gamestate0 (which
means lose). This is the case, since the game was never won

Input: HKBKB= {R1, ..., Rn+1}, state with action sa = s1∧...∧sn∧a,
successor state information s′

Output: Revised HKB KB′ = {R′
1, ..., R

′
n+1}

01 % If a wrong conclusion is inferred for the given
02 % state-action conjunction and successor state info
03 if s′ 6= R(KB, sa) then
04
05 % Add new exception, if causative rule not on
06 % most specific level...
07 if ρsa /∈ Rn+1 then % ρsa is the rule firing for
08 % providing R(KB, sa)
09 Rn+1 := Rn+1 ∪ {sa → s′ [1.0]}
10
11 % ...else remove/exchange existing exception
12 else
13 Rn+1 := Rn+1 \ {ρsa}
14 if s′ 6= R(KB, sa) then
15 Rn+1 := Rn+1 ∪ {sa → s′ [1.0]}
16 end if
17 end if
18 end if

Algorithm 1. Belief Revision for HKBs: If a wrong conclusion inferred
by R is caused by a rule not on level Rn+1, a new exception rule is
added on Rn+1; otherwise the rule providing the wrong conclusion is
removed or exchanged.

by the agent during random exploration in the short training
phase. In case some learned rules turn out to be wrong later,
they can be revised by a revision approach without the need
of relearning the whole model (see Section 4.5). (See [32] for
implementations of learning, reasoning and belief revision
algorithms based on HKBs.)

4.5 Belief Revision for HKBs
Unlike relearning knowledge that is once gained by sub-
symbolic machine learning approaches (e. g., during the
training phase of a game), a much more efficient solution
could be a symbolic revision approach used on a previously
learned knowledge base. By this, the learned knowledge can
be expanded or changed immediately on a symbolic level
instead of relearning statistically on a subsymbolic level. For
this purpose, this section first provides an algorithm for the
belief revision approach for HKBs used in [6] (Section 4.5.1).
The described approach is a simple attempt to realize revision
for HKBs, which allows the agent to revise the learned
knowledge represented by an HKB efficiently, in case the
environment changes. In addition, the approach will be
evaluated here against the six basic AGM postulates (e. g.,
[33]) known from belief revision to underpin the soundness
of the approach (Section 4.5.2).

4.5.1 A Simple Belief Revision Approach
We consider a learned HKB KB with the modifications
described in Section 4.4 and the reasoning algorithm R
described in Section 4.3: Given a state representation s and an
action a, and given that the representation of a subsequent
state s′ inferred through the HKB by R is inconsistent with
the corresponding representation of the actual perceived
subsequent state s′per of the agent (i. e., s′ 6= s′per), the basic
processing of the revision algorithm is provided Algorithm 1:

By this, the learned knowledge about the game mechanics
can be quickly adapted to changes in the environment
(e. g., scoring distributions, object localizations or even new
kinds of objects) in case the agent is being confronted with
new levels.
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4.5.2 Verifying Against the Basic AGM Postulates
When a novel belief revision approach is considered, a
common question is, whether the proposed approach is
reasonable in the sense that it leads to an appropriate state
of the represented knowledge after the revision is performed.
The AGM postulates, named after Alchourrón, Gärdenfors,
and Makinson (e. g, [33]) define some general criteria for this
purpose. In this section, the proposed revision approach for
HKBs will be evaluated against the six basic AGM postulates
for revision, according to the more modern representation
as provided, e. g., in [34] (using KB for the knowledge to
be revised, ∗ as revision operator, η for the new information
and + is an expansion operator simply adding the new
information without any efforts in preserving consistency):

1) Closure: KB ∗ η is a deductively closed set of beliefs.
2) Success: η ∈ KB ∗ η

(after the revision operation, the new information must
be contained in the revised knowledge)

3) Inclusion: KB ∗ η ⊆ KB + η
(the revised knowledge must not comprise more in-
formation as if the new information simply had been
added)

4) Vacuity: If ¬η /∈ KB then KB ∗ η = KB + η
(if the new information does not contradict what is
already known, it can simply be added)

5) Consistency: If η is consistent, then also KB ∗ η must be
consistent.

6) Extensionality: If η1 and η2 are equivalent pieces of
information, then KB ∗ η1 = KB ∗ η2.

In the following, it will be shown that the proposed
revision approach for HKBs can be considered valid against
the basic AGM postulates.

Since the original AGM postulates are defined to be ap-
plied on a deductively closed set of general logical formulas
being revised (or contracted) with another logical formula
representing the new information (or the information to be
forgotten, respectively), some preliminary adaptions to the
basic AGM postulates for revision are necessary in some
cases, to be able to apply them to revision on HKBs.

As first preliminary considerations, it can be remarked
that the revision algorithm (Algorithm 1) consists of three
operations to change the HKB KB:
• adding a new exception (which adds a new exception rule

on the most specific level Rn+1 ∈ KB),
• removing an existing exception (which removes a wrong

exception rule on the most specific level Rn+1 ∈ KB)
• exchanging an existing exception (which replaces the

conclusion of a wrong exception rule on the most specific
level Rn+1 ∈ KB with the expected correct conclusion).

After removing an existing exception, it is first checked
whether the correct conclusion can be inferred through
the reasoning algorithm R. Only if this is not the case,
adding a new exception is performed after the removal. Thus,
exchanging an existing exception only leads to the same
resulting knowledge base than an execution of removing
an existing exception followed by adding a new exception if R
did not provide the correct conclusion after the removal. For
this reason, exchanging an existing exception will be handled
as a separate case in the following.

Let now KB be an HKB containing rules according to

Definition 5 and let KB′ be the HKB revised by Algorithm 1,
then the belief revision algorithm can be considered valid
against the basic AGM postulates for the following reasons:

1) Closure: Since the values of the rules’ premises and
conclusions can be considered disjoint (according to
Definition 5), conclusions cannot contribute to further
new inferences (except for the topmost rule(s) on level
R1). Thus, every HKB can always be considered closed
in this sense.

2) Success: For the second postulate, it will be argued that
after the revision approach, the reasoning algorithm R
(as described in Section 4.3) will return the new correct
conclusion c for a given state-action pair sa = s1 ∧
... ∧ sn ∧ a, where c was introduced either by adding
a new exception or by exchanging an existing one, or c
stems from a rule on a level Rj<n+1 after removing
an existing exception on level Rn+1 which provided the
wrong conclusion:
• In case of adding a new exception for sa on level
Rn+1, the corresponding added rule ρ is of the form
s1 ∧ ... ∧ sn ∧ a → c where c is the new correct
conclusion. When applying R(KB′, sa), R will search
the revised HKB KB′ starting on the revised level
R′n+1 for the first rule whose premise is fulfilled by sa
(as described in Section 4.3). Since a new rule is only
added if there is no other rule σ ∈ Rn+1 with premise
sa (otherwise the belief revision would have been
done by exchanging an existing exception) and since the
premise of ρ represents a complete state, the new rule
ρ will be the only rule on the revised bottom most
level R′n+1 which is found by R and its conclusion c
will be correctly returned.

• In case of removing an existing exception for sa on
level Rn+1, a new rule with the correct conclusion
c is only added if R(KB′, sa) does not infer the
correct conclusion c from a rule on a level Rj<n+1.
Thus, either R(KB′, sa) returns c successfully after the
removal or this case falls back to the case of exchanging
an existing exception.

• In case of exchanging an existing exception for sa on
level Rn+1, the conclusion of the corresponding firing
rule found by R on level Rn+1 will be exchanged by
the correct conclusion c. Since only the conclusion
of that rule will be exchanged, R(KB′, sa) will still
find the same rule after the exchange and return the
exchanged conclusion c (which is the correct one).

3) Inclusion: For the inclusion postulate, it will be shown
that in case of removing an existing exception and in case
of exchanging an existing exception no more conclusions
than in case of adding a new exception on level Rn+1 can
be inferred after revision.
The case of adding a new exception implies that no other
rule with the same premise existed on level Rn+1 before
(otherwise it would have been be the case of exchanging
an existing exception). Thus, since the new exception
rule is added on the most specific level Rn+1 with the
premise according to the perceived complete state sa =
s1 ∧ ... ∧ sn ∧ a and the new correct conclusion c, it is
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ensured that in case of perceiving sa, the new conclusion
c will be inferred by R(KB′, sa) and no other inferences
will be affected (since sa is a complete state).
• In case of removing an existing exception for the com-

plete state sa, no other rule is added if R(KB′, sa)
returns the correct conclusion c after the removal.
Since the exception is removed on the most specific
level Rn+1 (according to Section 4.5.1), this changes
the inference only for exactly the complete state sa.
All other perceived states will result in the same
conclusion than before the revision. Therefore, no
further new conclusions can be inferred as in case the
new exception rule simply would have been added
on level Rn+1 for sa.

• In case of exchanging an existing exception for the
complete state sa: Since the exception rule with the
corrected conclusion c is located on the revised level
R′n+1 (according to Section 4.5.1), only the inference
for exactly the complete state sa is affected. Thus,
no further new conclusions can be inferred by R
from KB′.

4) Vacuity: For the vacuity postulate, it will be shown that
in case no conflicting exception rule exists (i. e., there is
no rule on level Rn+1 with a premise corresponding to
the perceived state sa = s1 ∧ ... ∧ sn ∧ a that provides
a wrong conclusion), both cases removing an existing
exception and exchanging an existing exception lead to the
same result than simply adding a new exception. Only the
level Rn+1 needs to be considered here, since if a wrong
conclusion stems from a rule on a level Rj<n+1, then
a corresponding new exception rule with the correct
conclusion for the complete state sa will be added
on level Rn+1 (which obviously did not exist before—
otherwise it would have been the one providing the
wrong conclusion).
More concretely, the vacuity postulate must hold, if for
the state sa = s1 ∧ ... ∧ sn ∧ a to be revised, no rule
exists on level Rn+1 with sa as premise and conclusion
c′ unequal to the correct conclusion c.
According to Section 4.5.1, the precondition of the belief
revision algorithm for removing an existing exception
or exchanging an existing exception is, that the wrong
conclusion stems from a rule on level Rn+1. Thus, if the
wrong conclusion stems from level Rj<n+1, the revision
algorithm simply falls back to adding a new exception in
both cases.

5) Consistency: By definition, an HKB cannot be inconsis-
tent, since even if multiple conclusions can be inferred
for a given state sa = s1 ∧ ... ∧ sn ∧ a, this semantically
expresses that the conclusions are equivalent and not
contradictory for the given state. Thus, every HKB will
be consistent in that sense.

6) Extensionality: According to Section 4.5.1, revision is
always done for a perceived complete state sa =
s1∧ ...∧sn∧a for which a wrong conclusion is returned
by R(KB, sa). Thus, it has to be shown that for any
equivalent information s′a ≡ sa (i. e., any permutation
of the operands s1, ..., sn, a), the revision will result in

the same HKB KB′ = KB. To verify this, it has to be
shown that (i) all three operations adding, removing and
exchanging an exception result in the same modification
for s′a and (ii) that the same modifying operation is
selected for s′a.
For (i), this follows from the commutativity of the logical
conjunction, since s′a will be the premise of the rule
to be added, or the rule to be removed or exchanged
will be selected according to the rule’s premise being
logically equivalent (since rules are only added, removed
or exchanged on the bottom most level Rn+1 where the
rules’ premises are complete states).
For (ii), this also follows from the commutativity of the
logical conjunction, since (according to Section 4.5.1) all
decisions whether an exception rule is added, removed
or exchanged solely depend on a rule’s premise being
logically satisfied.
Thus, if KB is being revised with an equivalent state s′a,
it follows that KB′ = KB.

5 AGENT MODEL

The agent model builds on the preliminaries described in
Section 3 and Section 4. First, the basic composition of
the concepts required to learn the game mechanics will be
summarized (Section 5.1). Consequently, this section focuses
on how the action selection is realized based on these ideas
and which modifications where necessary to optimize the
process (5.2). An overview of the agent model is provided
in Figure 3, accompanied by a supplemental higher level
description summarizing the steps of the agent’s process
(Section 5.3).

5.1 Basics

Since the learning track of the GVGAI competition is divided
into a training phase (on three out of five levels of each
game) and an evaluation phase (on already known and two
additional levels), the basic idea is to use the training phase
to accumulate knowledge about the game mechanics in
form of modified HKBs (as described in Section 4.4) and
to use planning based on the gained knowledge in the
evaluation phase. Furthermore, a belief revision approach is
used during the evaluation phase in case new experiences are
contradicting the learned knowledge of the training phase in
some aspects.

5.1.1 Dividing the Learned Knowledge into Different Aspects

Games can vary widely in their game play and the goals that
have to be reached to win the game. Thus, different aspects of
the game mechanics are important depending on the kind of
game that is played. For this purpose, the knowledge about
the game mechanics will be stored in three different HKBs –
one HKB for one type of knowledge representing one aspect
that might be relevant for decision-making (cf. also Figure 2).
The following three aspects are covered:
• KBmove, Relative Movement: The movement depending

on the relative position to other objects (e. g., obstacles
like “objects of this type cannot be passed”).
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• KBscr, Scoring: Score changes depending on interactions
with other objects (e. g., beneficial objects like “collecting
objects of this type increases the score by X”).

• KBwin, Winning/Losing: Which kind of object interactions
lead to winning or losing the game (e. g., objects that
lead to winning the game when touching them).

The division of the forward model into multiple HKBs
can be justified in case the game’s individual components are
independent from another. In this case the complete model
is reconstructible from the outputs of each sub-model.

5.1.2 Fast Creation of HKBs for the Different Aspects
As mentioned in Section 4.2 and Section 4.4, creating HKBs
can be computationally expensive on higher dimensional
state spaces. To overcome this problem, for every HKB
contained in the meta knowledge base, multiple separate
HKBs are created from reduced state spaces with less
dimensions. The resulting HKBs are than merged to one
final HKB representing one of the three types of knowledge
{KBmove,KBscr,KBwin}.

In the following, the creation of the Scoring HKB KBscr

will be described (the process is very similar for the other
two types of knowledge in the meta knowledge base):
KBscr reflects the knowledge about which action

leads to which score change, given the orientation of
the agent and the types of the objects currently sur-
rounding it. The HKB KBscr could be created (accord-
ing to the algorithm described in Section 4.2) from
the matrix Q̂scr = (qsabove, sbelow, sleft, sright,sori, a, sscr) with
sabove, sbelow, sleft, sright ∈ Sobj, sori ∈ Sori, a ∈ A and
sscr ∈ Sscr, where Sobj is the set of object types, Sori is
the set of the agent’s orientations, A is the agent’s action
space and Sscr is the set of score changes. Every element of
Q̂scr represents a learned relative frequency of how often
an action leads to a certain score change, given the agent’s
orientation and the types of objects above, below, left, and right
of the agent.

However, instead of creating KBscr directly from the
seven-dimensional matrix Q̂scr, as a first step, the four
smaller HKBs KBabove

scr , KBbelow
scr , KBleft

scr and KBright
scr are

created (each according to the algorithm described in
Section 4.2). Each of these HKBs represents the learned
knowledge about the score change, given the orientation
of the agent and a surrounding object focussing only on one
of the objects currently above, below, left, or right of the
agent. Every of the four smaller HKBs is created from an
only four-dimensional matrix which contains the learned
relative frequencies how often an action leads to a certain
score change, given the agent’s orientation and the type of
one of the objects above, below, left or right of the agent,
respectively. In case of KBabove

scr , this matrix has the form
Q̂above

scr = (qsabove, sori, a, sscr) with sabove ∈ Sobj, sori ∈ Sori,
a ∈ A and sscr ∈ Sscr, where Sobj is the set of object types,
Sori is the set of the agent’s orientations, A is the agent’s
action space and Sscr is the set of score changes.

As the second step, the four smaller HKBs that have been
created before are merged to the final HKB KBscr by adding
all rules of one level to the respective level in the merged
HKB KBscr. If a rule with the same premise and the same
conclusion already exists on this level, then the rule with the
smallest weight is kept.

random action
selection

if in training phase if not in training phase

count relative
frequencies for
observed state
changes

revision of HKBs

if current state
changes can be
explained by HKBs

if current state
changes cannot be
explained by HKBs

HKB-based
forward model
decision making

current state

next action

create HKBs
for Meta-KB:
            
         ,

if at the end of
training phase

if not at the end
of training phase

,

Fig. 3. Overview of the Agent Model Incorporating Learning, Revision,
and Action Selection [6]

By dividing every HKB in several smaller HKBs (each
representing only a subset of the state dimensions of the cor-
responding complete HKB), the computational challenge of
creating the entire meta knowledge base could be overcome.

5.2 Action Selection

After a short learning phase we use the extracted HKBs as
approximated forward model to predict the future states after
picking action a. The action selection process will be guided
by two sub-systems. MCTS is used for a broad exploration of
longer action-sequences. In case no preferable solution can be
found, we use BFS to find the shortest path to a state, which
would yield an increase in points. In the following we will
shortly review MCTS. The combination of both sub-systems
and the adaptations made will be introduced in Section 5.

5.2.1 Monte Carlo Tree Search (MCTS)
In this study we will make use of MCTS for sampling long-
term action sequences. MCTS is a heuristic search algorithm,
which consists of four phases, (1) node selection, (2) node
expansion, (3) simulation, and (4) backpropagation of the
(expected) reward. The first two steps form the tree policy,
while the latter two are also known as the default policy. The
simulation during phase (3) consists of multiple rollouts of
action sequences, which are simulated using a forward model.
A rollout starts at the agent’s current state and repeatedly
chooses actions till either the end of an episode, at which
the winner of the game is known, or any mid-game state is
reached. In case the simulation is stopped before the end of an
episode a scoring function is used to evaluate the value of the
final state. The result of an action is estimated using a forward
model, which describes the transition from state s to the next
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state s′ after using action a. The observed score at the end
of an episode is propagated back to improve iteratively the
value estimation of intermediate states. After all simulations
are completed the agent uses its value estimate to choose and
execute the action with the highest expected return. Note,
that this search process is affected by the reward distribution
and may fail in case of sparse rewards.

Multiple factors influence the capabilities of this search
strategy. Next to the quanity and depth of a rollout, previous
studies on card games showed that the quality of a rollout
is a critical factor for a strong playing behavior [35], [36].
This introduces a trade-off between the depth, quantity and
quality of a rollout during the simulation phase. All three
will be limited during this study due to the short time span
for action selection and the computational overhead of the
approximated forward model. The additional time spent
on the calculation of future states limits the search depth
considerably. During our tests we aimed for 20 simulations
using a depth of 20 actions. Using this approximation we are
able to partially simulate future states. We use a discounted
return based on all received simulated rewards between start
and end of the rollout. The action, which yields the highest
average return is chosen as the agent’s next action.

Similar to the agent Yolobot we tested BFS as an al-
ternative to MCTS. However, some adaptations to vanilla
breadth first search were necessary to compensate for the
additional time spent on calculating future states and the
high number of states to be processed in deeper layers. For a
fair comparison, we also added them to our implementation
of MCTS.
• Fast Forward Prediction/Macro Actions: Many games

consist of continuous movements in which the agent
needs to use the same action multiple times in a row.
We make use of this fact by multiplying the outcome of
a relative movement times the block size of the game.
This considerably reduces the simulation steps needed
for long movements and allows the agent to explore far
positions during a single rollout.

• State Pruning: In general, we cannot be sure which
states to prune, since state transitions are only partially
simulated. As an unpruned tree grows exponentially in
size, it is near to impossible to reach higher search depths
using breadth first search in the available time. Therefore,
we consider predicted states to be equal in case they
yield the same agent position, score, and winner. Using
this pruning strategy movements such as ”first up, then
left” and ”first left, then up” are considered to yield the
same result and are processed only once.

5.3 Higher Level Summary of the Agent’s Process
Finally, to complete this section, a brief higher level summary
of the main steps of the agent’s process will be provided here:

1) Training Phase:
1.1 Random exploration to collect sensory data.
1.2 Create HKBs as forward models from collected data.

2) Evaluation Phase:
2.1 Perform action selection by MCTS/BFS based on the

forward model from Step 1.2.
2.2 If an observation is not consistent with the forward

model from Step 1.2: Perform belief revision.

6 EVALUATION

The proposed approach is evaluated in two phases. First,
parameters of BFS and MCTS are tuned according to their
resulting game-playing performance in terms of games of the
GVGAI framework (Section 6.2). In the second part of our
evaluation, the best performing parameter combination per
algorithm will join a hypothetical competition of the GVGAI
single-player learning track. Both evaluations will use the
same evaluation setup, which is explained in Section 6.1 and
resembles the competition’s learning track rules of 2017. As
the limits on training time were removed from the track’s
rule set in 2018, the agents of the subsequent years were
developed under significantly different conditions and will
therefore not be considered in the following evaluation.

6.1 Evaluation Setup
During both of the following evaluations, we will make use of
the 10 games provided in the competition’s training set 1. As
suggested by the authors of the GVGAI framework, this set
of training games has been chosen to represent games with
differing characteristics [37]. Games vary in their scoring
system, the type of included NPCs, the use of a resource
system, the number and types of termination conditions as
well as the number of actions available to the agent. It is the
only set for which the results of submitted learning-track
agents are publicly available. A comparison to agents of the
game-playing track is not considered in the context of this
paper since the track’s underlying learning conditions are
vastly different to the learning track.

For each of these 10 games the agents’ are trained for
5 minutes by playing 3 test levels. During the training, the
agent is required to play each training level at least once.
After this initial training phase, the agents game-playing
performance is tested using 2 previously unseen levels.
Agents are later compared according to their average win-
rate, average score, average ticks until a game has been won,
and average ticks until a game has been lost. Based on these
values we determine a ranking of the agents for each of the 10
games. Finally, we apply the Formula-1 scoring system and
rank the agents according to their sum of points achieved
through all games.3

During the training, our proposed agent uses the first 50
seconds to repeatedly play through provided training levels.
The remaining training time is used to process observed
interactions and construct the agent’s knowledge bases.
During the evaluation, the approximated forward model
is used to play each test level 20 time to measure the agent’s
game playing performance.

6.2 Parameter Optimization
For optimising the agents’ parameters we performed a
grid search during which each combination was tested by
playing the 10 training set games. Results of this process are
summarised in Figure 4 which shows the agent’s ranking per
game and their total score. The influence of each parameter
on the agent’s average win-rate, score, and ticks per game
is shown in Figures 5 and 6. For the latter we concentrate

3. Depending on their ranking the agents receive 25, 18, 15, 12, 10, 8,
or 6 points, whereas the best agent receives the most points.
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Fig. 4. Agent rankings per game for different parameterizations. Total score per agent when applying the Formula-1 scoring scheme.

on games that have been lost since the variation of the game
length is larger than in games that have been won.

For BFS-based agents we adjusted the number of node
expansions (100 or 200), the usage of macro actions, and the
usage of state pruning, resulting in 8 combinations. Results
of the BFS agent optimisation, show that a change of a
single parameter often only minorly influences the agent’s
results. The agent’s total points show that the BFS agent
using 100 node expansions without using macro actions or
state expansions results in the best performance.

For the MCTS-based agents we adjusted the number
of tree expansions (5 or 10), the rollout length (10 or 20),
and the usage of macro actions during the simulation, also
resulting in 8 combinations. Due to the competition’s tough
time-limits for action selection (40ms) and the additional
computational cost of the approximated forward model, the
search is reduced to a small number of tree expansions
and comparably short rollout lengths. The MCTS parameter
optimisation showed that changing a single parameter often
has not much of an effect on the agents game-playing
performance. The main difference in the agents’ win-rate can
be found when comparing MCTS agents using short rollouts
with agents using longer rollouts. Especially in games with a
large number of random events, such as butterflies, shorter
rollouts seems to be beneficial since the accuracy of made
predictions will lessen with increasing length of the rollout.
Overall, the agent using 10 tree expansions, a simulation
depth of 5, and making use of macro actions during the
simulation performed best.

6.3 Comparison to Agents of the 2017’s Learning Track
Subsequently, we compared the best-performing MCTS and
BFS agents with agents of the 2017’s learning track. Since the
sourcecode of these agent’s is unavailable at time of writing
this paper, the evaluation is based on reported results on the
competitions website4. Unfortunately, the number of ticks
until a win or loss cannot be used as additional criteria,
since the competition website does not list them. In case the

4. http://gvgai.net/gvg rankings learning 1p.php

win-rate and score are not sufficient to determine a ranking
among a set of agents we consider it a draw.

Table 1 lists the agents’ win-rate and average score for
each of the 10 games. The number of points per game and
the total score across all games are listed in Table 2. Our
results show that the proposed agent model using the MCTS
algorithm is able to overall score the most points (203). Given
a margin of 34 points, the agent by Ilhan and Etaner-Uyar [12]
performed second best with a total of 169 points. Similarly,
the BFS agent performed well on average, ranking third
when being compared with other agents.

6.4 Discussion of the Results
The MCTS-based agent is the single best agent in 5 out of
10 games. The proposed agent model performed better than
other agents in the games Boulderdash, Butterflies, and Survive
Zombies. In those games the agent wins by moving on the
same or neighbouring position as other objects or characters.
Here, the applied search scheme can work to its full poten-
tial, since extracted knowledge bases consider neighboring
relations as important criteria for the prediction of future
states. After the agent learns how to move (represented in
KBmove), the agent easily scores points by searching a path
to the closest objective. In the game Survive Zombies the agent
also needs to apply knowledge about the winning and losing
condition (KBwin). In case the player runs out of health
he quickly needs to collect a healing item while avoiding
zombies. As it was the case for chasing, the same search
schemes are efficient in avoiding sources of danger while
searching for an item.

In two of the remaining games (Frogs, Portals) our agent
and all other agents score zero points. A closer inspection
of extracted knowledge bases shows that in these games
the agent failed to learn a prediction of upcoming rewards
due to the small number of positive training examples in
these sparse reward games. For this reason, actions cannot
be differentiated according to their expected return, which
results in a random behaviour. The same effect can be
observed in the game Sokoban, which additionally to the
sparse reward requires planning of a long action sequence.
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Currently learned knowledge bases do not consider move-
ment of non-player entities, which are necessary to solve
the puzzles provided in each level. For this reason it is
impossible to plan the necessary action sequences to win the
game. Hence, the agent once again falls back to choosing
actions at random.

Despite the good performance, our agent has still much
more room for improvement in games such as Aliens and
Boulderdash. The current score could be improved by tak-
ing the actions of non-player characters into account. For
example, in the game Alien the movement of the aliens
and the fired shots can be predicted very easily. Using this
information should allow to plan how an enemy can be hit.

7 CONCLUSION AND FUTURE WORK

Our proposed algorithm learns a prediction of future states
based on a given state and an action to be applied. This
prediction model is split into multiple individual sub-models,
which are first trained on sample interactions with the game
and later revised with an AGM conforming belief revision
approach, in case of contradictory observations. Using the
extracted model we apply MCTS and BFS to find the best
possible action at each game tick. The used search procedures
were optimized by applying a state pruning, which reduces
the number of evaluated states during the search phase.

We evaluated our approach in 10 games of the GVGAI
competition. The proposed Forward Model Approximation
agent has resulted in a better average game-playing perfor-
mance than other game learning agents across a total of 10
games of the GVGAI framework. Despite using only one
minute of training time, the agent has shown capable in
playing some of the tested games much better than other
agents (cf. Boulderdash, Butterflies, and Survive Zombies).

Our evaluation shows the potential of forward model
approximation. However, there is still much room for im-
provement, since the current version only considers the
agents movement during future states. Complex interaction
with other game elements are not yet modeled. Further
improvements could be achieved by generalizing the predic-
tion to many other attributes. Future work could focus on
analyzing the capabilities of forward model approximation
by increasing the number of predicted variables, while
keeping the computational expense as low as possible.

Additional project files and the detailed results of our
evaluation can be found at:
https://github.com/ADockhorn/Forward-Model-Approximation
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(a) Node Expansions
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(b) Pruning Similar States
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(c) Macro Actions

Fig. 5. Comparison of BFS Agent Parameterisations
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(b) Simulation Depth
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Fig. 6. Comparison of MCTS Agent Parameterisations


